Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Eur Arch Otorhinolaryngol ; 278(6): 1869-1877, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1233255

ABSTRACT

PURPOSE: To provide a novel solution to reduce aerosol exposure in the operating room during endoscopic sinus and skull base procedures in the COVID-19 era. METHODS: We have designed a 3D printable midfacial mask that partially seals the nose, while allowing instrumentation during endoscopic transnasal surgery. The mask when connected to a vacuum system creates a constant negative pressure inside it, sucking out aerosols and gases generated during surgical procedures. Its effectiveness was tested using vapour exhalations by a human volunteer and drilling bone in a head model. The physical barrier effect was measured using fluorescein atomization in a head model. RESULTS: The pressure and airflow measured remained negative inside it in all the different situations tested. The mask was capable of completely evacuating human adult exhalation, and was more effective than the hand suction instrument. However, it was as effective as hand suction instrument at preventing aerosol spread from bone drilling. The physical barrier effect achieved a 72% reduction in the splatter created from the fluorescein atomization. CONCLUSIONS: The mask effectively prevented the spread of aerosols and reduced droplet spread during simulated transnasal endoscopic skull base surgery in laboratory conditions. This device has potential benefits in protecting surgical personnel against airborne transmission of COVID-19 and could be useful in reducing chronic exposure to the hazard of surgical smoke.


Subject(s)
COVID-19 , Aerosols , Endoscopy , Humans , SARS-CoV-2 , Skull Base/surgery
2.
Educación Médica ; 2020.
Article | ScienceDirect | ID: covidwho-753671

ABSTRACT

Resumen Introducción: Durante la pandemia COVID-19 es necesario que los profesionales actualicen conocimientos, actitudes y habilidades para tratar la infección, y se protejan frente al contagio con suministros sanitarios limitados. Se describe el empleo estratégico de un centro de simulación para facilitar la adaptación de un servicio de salud a la pandemia. Métodos: Se analiza la experiencia de un centro de simulación en Cantabria, España. Un grupo de trabajo identifica y clasifica las necesidades en tres áreas: 1) aprendizaje (categorizadas con un sistema de zonas para adaptar el diseño e implementación del entrenamiento a las necesidades específicas);2) innovación (relacionadas con la práctica asistencial y el equipamiento sanitario);y 3) suministros sanitarios (que pueden fabricarse con las impresoras 3D disponibles en el centro de simulación para material docente). Resultados: 1) Se implementan tres tipos de actividades de entrenamiento: talleres de formación de formadores para protección frente a trasmisión por gota-contacto, simulaciones para la protección frente a contagio por aerosoles y un marco de trabajo para el análisis de las situaciones con pacientes reales. 2) Se analizan máscaras de buceo para asistencia ventilatoria, prototipos de ventiladores y técnicas para ventilar dos pacientes con un ventilador. 3) Se fabrican máscaras de protección facial, hisopos para la toma de muestras y horquillas para mascarillas. Conclusión: La participación estratégica de un centro de simulación puede promover y facilitar la adaptación de un sistema de salud a una epidemia por COVID-19. Introduction: During the COVID-19 pandemic professionals need to update the knowledge, attitudes and skills necessary to treat infected patients, and protect themselves against the transmission of the disease with limited medical supplies. The strategic use of a simulation center to facilitate the adaptation of a health service to the pandemic is described. Methods: The experience of a simulation center in Cantabria, Spain is analyzed. A working group identifies and classifies organizational needs into three areas: 1) learning (categorized with a zone system to tailor the design and implementation of training to specific needs);2) innovation (related to healthcare practice and healthcare equipment);and 3) sanitary supplies (which can be manufactured with the 3D printers available in the simulation center for teaching materials). Results: 1) Three types of simulation training activities are implemented: train the trainer workshops for protection against drop-contact transmission, simulations for protection against aerosol transmission and a framework for the analysis of real situations with patients. 2) Diving masks for ventilatory assistance, techniques for ventilating two patients with one ventilator and prototype ventilators are analyzed. 3) Facial protection masks, swabs and mask forks are printed. Conclusion: The strategic participation of a simulation center can promote and facilitate the adaptation of a health system to a COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL